活動區時間:2011-02-16~2011-03-31
一本從代數到微積分的系統性數學學習書─《數學是什麼?》
「明白易懂……把整個數學領域的基本概念和方法清晰地呈現出來。」——愛因斯坦
《數學是什麼?》(What is Mathematics?) 是一本為初學者和學者、學生和老師、哲學家,和工程師而寫的數學名著。自1941年出版以來就得到包括愛因斯坦、赫曼.外爾 (Herman Weyl) 等一代科學大師在內的一致推崇。兩位原作者如今都已辭世,不過後繼有人。
1996年在著名數學家伊恩.史都華手中把原著中多個相關的數學主題帶到切合當前的發展水平,因而有現在的第二版。通過平易近人,引人入勝的描述,這部閃爍出兩代作者才華的鉅著,把「反映出人類積極的意志,深思熟慮的推理,以及在美學上盡善盡美的祈求」的數學世界,栩栩如生地呈現在我們眼前。
《數學是什麼?》文情並茂地給我們報導了一個非凡的故事,為我們對數學的瞭解打開了一扇窗。
本書作者:瑞赫德.庫蘭特、賀伯特.羅賓斯、伊恩.史都華
瑞赫德.庫蘭特(Richard Courant, 1888 ~ 1972)
出生於德國,哥庭根大學數學研究所創建人,1920年至1933年期間任所長, 他在函數論和變分法方面的發展做出貢獻。在研究所期間與當時最負盛名的德國數學家希爾伯特(David Hilbert, 1862~1943)建立密切的合作關係,兩人合寫了著名的《Methods of Mathematical Physics》一書,將數學分析運用到物理學。1933年納粹興起,他逃往美國,翌年任紐約大學數學教授,並將他在哥庭根大學的經驗在紐約大學複製。在他的領導下建立了美國最有聲望的應用數學研究所之一。1958年他退休時為了紀念他,研究所以他命名(Courant Institute of Mathematical Sciences)。他的另一本名著《Differential and Integral Calculus》也被譽為是現代在微積分方面的最佳著作之一。
賀伯特.羅賓斯(Herbert Robbins, 1915 ~ 2001)
為前美國紐澤西州羅格斯大學(Rutgers University)數學教授,以拓撲學、測度理論、統計學等方面的研究而知名。
伊恩.史都華(Ian Stewart)
是英國英格蘭渥威克大學(University of Warwick)數學教授,在推動大眾對科學的認識方面做出許多貢獻。1995年獲得英國皇家學會頒贈法拉第獎章。他的著作廣泛,其中尤以《Nature’s Numbers》(大自然的數學遊戲,天下出版)、《Does God Play Dice?》(上帝擲骰子嗎?八方出版),以及被他視為可作為本書姊妹篇的《From Here to Infinity》為大家所熟知。他同時為科學雜誌《Scientific American》(科學人)撰寫 Mathematical Recreation 專欄。
北一女中許秀聰:無比吸引力的歡樂源泉
有人在精品店血拼時,全身血脈賁張,因慾望得到滿足而快樂。但也有的人歡樂泉源來自別處。
像是數學,數學能夠帶給學生的最大影響,應該是學生在多年數學學習過程的激勵下,所培養出來那種主動迎向問題,細細思索及嘗試,意圖能征服阻礙,到達撥雲見日之欣喜階段的態度。如果我們問別人:「學習數學的樂趣是什麼?」大多數人都會回答:「在一個困難問題經過苦苦思索後豁然開朗,那樣的快樂無與倫比。」
數學所提供的歡樂源泉,不同於大血拼,是具備如下的特質:(1)當我們每日在真實世界探索時,回頭瞧,會發現數學抽象思維和實象之間那種若即若離的微妙關聯,人類生活、自然需求激勵數學研究;(2)在數學領域中,即使其版圖仍在繼續成長,舊的發現卻鮮少變得過時。所以接近數學的人,不須面臨底下的心靈惆悵——拿起筆記本,將從前所學猛然塗改,並對心得進行縫補。
在《數學是什麼?》這本書中,透過作者極具洞察力的思維及眼光,技術性細節與走彎路的舉措被避免了,數學看來更像是非凡的故事,比課堂知識有趣得多。裡面有數學家的冒險歷程,「找到不尋常的發現」是對勇者的犒賞。想想看,如果學生鎮日鑽入考試與補習的痛苦輪迴中,兩相比較起來,對數學的瞭解似不能同日而語。學習在各種程度的學生身上展現,但真正用心挖掘數學深層關聯的人,有機會領略數學之美。
讓我們由書中擷取幾例,先來看繆畢烏斯帶。德國數學家繆畢烏斯(August Ferdinand Mobius,1790~1868)在其一篇關於「單側」表面的學術報告中,提出一些直至今日仍會令初識者大為驚奇的論證。所謂的繆畢烏斯帶,它是把一條細長的長方形帶子的一端扭轉到另一側之後,同另一端貼在一起而形成。第一,常見的雙側表面是由細長形帶子沒有經過扭轉而把它的兩端貼起來形成的,而繆畢烏斯帶只有單側面,一隻沿著帶子而始終維持在帶子中間線爬行的小蟲將會左右倒置地回到它原來的出發點;第二,如果沿著繆畢烏斯帶的中線剪開,會發現它依舊是一條完整的帶子。就如書中作者所言,「對於任何一個不熟悉繆畢烏斯帶的人來說,很難預知這種變化,它與我們在直覺上認為『應該』會出現的事情竟是如此地背道而馳。」我們可以藉由閱讀這本書的第四、五章之幾何篇章,來加強直覺,抓住事物的可構性,或說是「開啟幾何之眼」。
台師大洪萬生:爬上數學大廈的頂端
數學家兼科普作家史都華為本書修訂版寫序時,特別指出:「合乎邏輯形式的數學(formal mathematics)就像拼寫與文法--正確地使用局部性的規則。有意義的數學(meaningful mathematics)有如新聞工作--它報導一個有趣的故事。但又不像某些新聞報導,因為它的描述一定要真實。最好的數學就像文學--它把故事栩栩如生地帶到你的眼前,從而無論在理智上或情緒上使你捲入其中。」這個比喻堪稱是史都華的現身說法,生動地呼應了庫蘭特所謂的「數學作為一個有機的整體結構」之重要意義。形式數學固然重要,解題更是不遑多讓,然而,唯有類似敘事(narrative)的知識活動,才是掌握數學整體結構的正道。
一九六七年,我進入台灣師範大學數學系就讀時,經由翻版書而得以略窺本書內容--比起史都華,晚了四年的「初體驗」。不過,由於閱讀本書相較於譬如英文版微積分教科書,顯然需要更成熟的閱讀(或數學)經驗--對於數學主修學生而言,本書所訴求的,正如前述,絕對不僅止於解題,它的更高尚要求,乃是數學知識的結構與意義之掌握,因此,「制式學習」如我者一直無從深入。當然,缺乏勝任可靠的導讀,也是另一個主要的原因。
現在,本書有了認真的中譯者與編輯,再加上目前國內關數學普及閱讀活動之推廣,它的影響力絕對可以預期。其實,我在初次接觸本書大約十年後,開始有計畫地自修數學史,從而得知庫蘭特與哥廷根學派克萊因(Felix Klein)與希爾伯特(David Hilbert)之深厚關係。這是我從數學史面向,體會到庫蘭特的數學認識論的一段經歷。此外,我在台灣師大也曾以庫蘭特的微積分與分析學著作(Introduction to Calculus and Analysis,與Fritz John合撰)為教材,在課堂中與學生實際地分享庫蘭特的數學經驗。有了這兩個面向的體驗之後,我還不時地回頭重溫本書論述,充分體會其中所洋溢的傑出數學家之深刻洞察力。
沒有留言:
張貼留言